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The Emerging Field of Signal 
Processing on Graphs

David I Shuman, Sunil K. Narang, Pascal Frossard, 
Antonio Ortega, and Pierre Vandergheynst



Graph as a Data Structure

● Defined on the vertices of the graph (discrete)
● More structured, less regular than analog signals
● Similar techniques to DSP

    »      tasks           »   »

Graph Signals

● Edge weights correspond to vertex similarities 
● Edges and weights dictated by physics of the problem

or inferred from data



Graph Signal Processing

● f: V → R
● no SI, time/frequency duality properties
● employ localized operations
● use information from neighbouring vertices 

1. construct graph
2. transform to spectral domain
3. solve downstream task



SPECTRAL GRAPH DOMAIN

The Laplacian Matrix
degree matrix (diag)

adjacency matrix (symmetric for undericted)

1st order differences on graph:
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1st order smoothing operation



SPECTRAL GRAPH DOMAIN

The Laplacian Matrix

For undirected graphs:

● real, symmetric
● orthonormal eigenvectors
● real, non-negative eigenvalues

Graph Spectrum: 



SPECTRAL GRAPH DOMAIN

The Graph Fourier Transform

forward:

inverse:

For connected graphs:

● lower l’s ⇒ smoother eigenvectors (l=0, constant eigvec) 
● higher l’s ⇒ more oscillations with increasing edge weights
● graph frequencies relate to zero crossing of a graph signals



SPECTRAL GRAPH DOMAIN

The Graph Fourier Transform

For connected graphs:

● lower l’s ⇒ smoother eigenvectors (l=0, constant eigvec) 
● higher l’s ⇒ more oscillations with increasing edge weights
● graph frequencies relate to zero crossing of a graph signals

Visualizing Laplacian eigvec as signals.
constant Fiedler (smooth)



SPECTRAL GRAPH DOMAIN

The Graph Fourier Transform

For connected graphs:

● lower l’s ⇒ smoother eigenvectors (l=0, constant eigvec) 
● higher l’s ⇒ more oscillations with increasing edge weights
● graph frequencies relate to zero crossing of a graph signals

Zero-crossings as a notion of graph frequency. 

unnormalized normalized



SPECTRAL GRAPH DOMAIN

The Graph Fourier Transform

Equivalent representations of a graph signal in the vertex and graph spectral domains. 
Signal with gaussian edge weights (can be defined directly on the spectral domain).



Graph structure plays a key role in spectral analysis.

SPECTRAL GRAPH DOMAIN

The Graph Fourier Transform



● derivative wrt edge:

● gradient at v
i
: 

DISCRETE CALCULUS ON GRAPHS

Measures of Graph Smoothness

● local smoothness: 

● global smoothness: 

p=1: total variation
p=2: laplacian quadratic form can be used as regularizers in 

graph objective functions



DISCRETE CALCULUS ON GRAPHS

Measures of Graph Smoothness

can be used as regularizers in 
graph objective functions



GRAPH SIGNAL PROCESSING

Operations For Signals On Graphs

freq:

time:

CLASSICAL GRAPHS

FILTERING / CONVOLUTION

TRANSLATION

viewed as convolution analogous but changes the signal



GRAPH SIGNAL PROCESSING

Operations For Signals On Graphs

freq:

time:

CLASSICAL GRAPHS

FILTERING / CONVOLUTION

TRANSLATION

viewed as convolution analogous but changes the signal



GRAPH SIGNAL PROCESSING

Operations For Signals On Graphs



LOCALIZED MULTISCALE TRANSFORMS

Graph Wavelet Transform

Why?
● Simultaneously localize signal on the time and frequency domain
● Exploit the time-frequency resolution tradeoff

Spread of graph:

vertex: 

spectral: 
design bases that are localized 

in both domains



LOCALIZED MULTISCALE TRANSFORMS

Graph Wavelet Transform
VERTEX SPECTRAL

translated low pass filterssupport only on K-hop 
neighbourhood of vi



Brain structure-function coupling 
provides signatures for task decoding 
and individual fingerprinting

Alessandra Griffa a,b, Enrico Amico b,c, Raphaël Liégeois b,c, 
Dimitri Van De Ville b,c,d, Maria Giulia Preti b,c,d

a Department of Clinical Neurosciences, Division of Neurology, Geneva University Hospitals and Faculty of Medicine, University of 
Geneva, Geneva, Switzerland
b Center of Neuroprosthetics, Ecole Polytechnique Fédérale De Lausanne (EPFL), Institute of Bioengineering, Geneva, Switzerland
c Department of Radiology and Medical Informatics, University of Geneva (UNIGE), Geneva, Switzerland
d CIBM Center for Biomedical Imaging, Switzerland



Introduction

Task decoding and individual fingerprinting

fMRI data Graph feature 
representation



Background

❖ Analysis on the data during resting state and seven different tasks are 
through structure-function signatures quantification of
➢ SDI (Structural-Decoupling Index)

■ Quantifies the degree of local (dis)alignment between 
structure and function.

➢ c(coupled)-FC & d(decoupled)-FC(functional connectivity) 



Methodology - preprocessing

Feature extraction
FC edge strength:
Pearson’s correlation between pairwise time courses
FC nodal strength:
Sum of absolute values of all the connections

Data recording
fMRI acquired with 8 different task conditions on 
100 unrelated healthy subjects. (resting state and 7 
tasks: emotion, gambling, language, motor, relation, 
social, working memory) 
Sequences were pre-processed with state-of-the-art 
pipelines to obtain regional functional time courses 
and structural connections



Methodology - feature representation

SC Laplacian
L = I-Asymm
Structural harmonics uk by eigendecomposition:
LU=LΛ
Where eigenvalue [Λ]k,k=λk interpreted as spatial 
frequency of the corresponding eigenvector uk. 
Frequency filter is applied.
LF: c first eigenvectors complemented by zero
HF: last (N-c) first eigenvectors complemented by zero



Methodology - feature representation

SC Laplacian:
L = I-Asymm

Eigendecomposition:
LU=LΛ

Low-pass filter:
U(low) 
High-pass filter:
U(high)

Function data is projected:
ŝt=UTst

Low-frequency functional activity comp:
sC

t=U(low)UTst
High-frequency functional activity comp:
sD

t=U(high)UTst

c-FC and d-FC are computed with Pairwise 
Pearson’s correlations of sC

t, s
D

t.

L2 norm across time measures 
(de)coupling: 
SDI=||sC||2/||s

D||2



Methodology - overview



Results - accuracy

● SVM is used to classify different task-related states based on the extracted features.

Edge based features 
well characterizing task 
decoding patterns.



Results - cross-task fingerprinting accuracies

Largely outperform 
than other metrics!



Results - effect 

Distribution of F-values from 
two-factor ANOVA analyses

statistically significant brain 
regions or connections
Bonferroni-corrected(p<0.05)

Average of F-values in 
different regions.

Task decoding pattern 
involved more prominently 

regions such as visual, 
somatomotor, auditory.

Subject fingerprinting is 
more spatially distributed.

Structure-function coupling and functional connectivity measures provide 
complementary contributions to both task and subject identification.



Recovering Gene Interactions from 
Single-Cell Data Using Data Diffusion

David van Dijk, Roshan Sharma, Juozas Nainys, Kristina Yim, Pooja Kathail, 
Ambrose J. Carr , et. al.



Background

Dropout: Single-cell RNA sequencing suffer from under-sampling of mRNA 
molecules, which can obscure gene-gene relationships.

MAGIC: Markov affinity-based graph imputation of cells.
A method that shares information across similar cells via data diffusion, to 
denoise the cell count matrix and fill in missing transcripts. 



Methodology

Embed cell phenotypes in a lower dimensional manifold using a nearest neighbor graph.

Matrix of cells by genes (middle) of the data (right).

Compute cell-by-cell distance matrix.

Convert distance matrix to affinity matrix using a Gaussian 
kernel.

Similarity between two cells decreases exponentially with their 
distance.Normalized affinities are shown for a single point as 

transition probabilities, resulting in a Markov matrix.

Exponentiate the Markov matrix to a chosen power t.

Multiplication of the exponentiated Markov matrix by the 
original data matrix to obtain a denoised and imputed data 
matrix.

Identifies the cells that are most similar and aggregates gene expression across 
these highly similar cells to impute gene expression that corrects for dropout and 
other sources of noise.

Nearest neighbors in the raw data do not necessarily represent the most 
biologically similar cells due to sparsity.

M representing the probability distribution of transitioning from 
one cell to another in a single step.



Case study

MAGIC Enhances Structures in Bone Marrow, data evaluated in mouse bone marrow dataset.

Cell types
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Discussion


