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The Emerging Field of Signal
Processing on Graphs

David | Shuman, Sunil K. Narang, Pascal Frossard,
Antonio Ortega, and Pierre Vandergheynst
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Graph as a Data Structure &={V, & W}

e Edge weights correspond to vertex similarities
e Edges and weights dictated by physics of the problem
or inferred from data

Graph Signals

e Defined on the vertices of the graph (discrete) l I

e More structured, less regular than analog signals
e Similar techniques to DSP
»  tasks » »

: l‘

[FIG1] A random positive graph signal on the vertices of the
Petersen graph. The height of each blue bar represents the

signal value at the vertex.
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Graph Signal Processing

f:V—-R

no SI, time/frequency duality properties
employ localized operations

use information from neighbouring vertices

1. construct graph
2. transform to spectral domain
3. solve downstream task
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SPECTRAL GRAPH DOMAIN

The Laplacian Matrix

degree matrix (diag)

adjacency matrix (symmetric for undericted)

e
L=D-W

1st order differences on graph:

[> (L) @) = ), Wilf@) — ()] [>

JEN;

1st order smoothing operation
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SPECTRAL GRAPH DOMAIN

The Laplacian Matrix

For undirected graphs:

e real, symmetric
e orthonormal eigenvectors
e real, non-negative eigenvalues

Graph Spectrum: O (L) = {/10, .5 A L 1}




=PrL
SPECTRAL GRAPH DOMAIN

The Graph Fourier Transform

forward: I}(M) I=<f, Uy > = i f(z')qu (l)

i=1

N-1,
inverse: i) = D> FA)ui)
0=0

For connected graphs:

e lower I's = smoother eigenvectors (I=0, constant eigvec)
e higherI's = more oscillations with increasing edge weights
e graph frequencies relate to zero crossing of a graph signals
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SPECTRAL GRAPH DOMAIN

The Graph Fourier Transform

constant Fiedler (smooth)

Visualizing Laplacian eigvec as signals.

For connected graphs:

e lower I's = smoother eigenvectors (I=0, constant eigvec)
e higherI's = more oscillations with increasing edge weights
e graph frequencies relate to zero crossing of a graph signals
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SPECTRAL GRAPH DOMAIN

The Graph Fourier Transform unnomalized normalized
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Zero-crossings as a notion of graph frequency.
For connected graphs:
e lower I's = smoother eigenvectors (I=0, constant eigvec)
e higherI's = more oscillations with increasing edge weights
e graph frequencies relate to zero crossing of a graph signals
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SPECTRAL GRAPH DOMAIN

The Graph Fourier Transform
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Equivalent representations of a graph signal in the vertex and graph spectral domains.
Signal with gaussian edge weights (can be defined directly on the spectral domain).
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SPECTRAL GRAPH DOMAIN

The Graph Fourier Transform
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Graph structure plays a key role in spectral analysis.
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DISCRETE CALCULUS ON GRAPHS

Measures of Graph Smoothness

1= Wi [F(j) — )]

e derivative wrt edge: of
de

i

e gradientatv; Vif := Ha_f

oe

i} }ee E s.t.e= (i) forsome je V|

k\3|r—-

e localsmoothness: [Viflz:=| > Wi;[£(j) — F@F

JjeEN:

e global smoothness: Sy ( =1 Z IVfl5 = 1 Z 2 Wilf()

z(:l zel | jeN:

— O]

p=1: total variation \

p=2: laplacian quadratic form

can be used as regularizers in

graph objective functions
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DISCRETE CALCULUS ON GRAPHS

Measures of Graph Smoothness

Gaussian Filtered Gaussian Filtered
Original Image Noisy Image (Std. Dev. = 1.5) (Std. Dev. = 3.5) Graph Filtered

can be used as regularizers in
graph objective functions

argmin{|f — y|3 + yfTLf}
f
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GRAPH SIGNAL PROCESSING

Operations For Signals On Graphs

CLASSICAL

GRAPHS

FILTERING / CONVOLUTION

frea: £ (&) = Fin(E) R (&)

fou(t) = [ Fn(E)h(£)e*™ dE
- / fn(T)R(t — T)dr =:(fin* h) ()

time:

oul z f;n(l h(a- )ul()

€=0

;;)ul (A:) — /}in(/ll)i)(/li)

TRANSLATION

(Tuf) (¢) :=F(t —v)
/'(Tuf) (t) = (F=6.) (2)

viewed as convolution

(Tng)(0)

/7(9*5;7 ) = ; )uo(i)
AN

analogous but changes the signal
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GRAPH SIGNAL PROCESSING

Operations For Signals On Graphs

CLASSICAL

GRAPHS
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GRAPH SIGNAL PROCESSING

Operations For Signals On Graphs

[FIG5] The translated signals (a) T1009, (b) T2009, and (c) 72,0009, where g is the heat kernel shown in Figure 4(a) and (b).
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LOCALIZED MULTISCALE TRANSFORMS

Graph Wavelet Transform

Why?
e Simultaneously localize signal on the time and frequency domain
e Exploit the time-frequency resolution tradeoff

Spread of graph:
vertex: A i(f) = HfHZZ[d l]][f()]

2 jey

spectral: |~ A%(f):= mm{
/JER+

> V2= Juflil]

| 1}z &5

design bases that are localized

in both domains
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LOCALIZED MULTISCALE TRANSFORMS

Graph Wavelet Transform

VERTEX SPECTRAL

i ) = WENEGT S = Th = h(D)ss

/ /

support only on K-hop translated low pass filters
neighbourhood of v,

Spatial and Spectral Localization on
Random Regular Graphs

o CKWT (Mexican Hat)
il =~ SGWT Wavelets

Spatial Spread (Log Scale)
|

0.05 0.1 0.15 0.2 0.25
Spectral Spread
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Brain structure-function coupling
provides signatures for task decoding
and individual fingerprinting

Alessandra Griffa 2°, Enrico Amico ¢, Raphaél Liégeois °°,
Dimitri Van De Ville ®©¢, Maria Giulia Preti ®°¢

a Department of Clinical Neurosciences, Division of Neurology, Geneva University Hospitals and Faculty of Medicine, University of

Geneva, Geneva, Switzerland

b Center of Neuroprosthetics, Ecole Polytechnique Fédérale De Lausanne (EPFL), Institute of Bioengineering, Geneva, Switzerland
c Department of Radiology and Medical Informatics, University of Geneva (UNIGE), Geneva, Switzerland

d CIBM Center for Biomedical Imaging, Switzerland
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Introduction

Task decoding and individual fingerprinting
Presented Stimuli fMRI data Graph feature

s»-  representation }
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Background

S

% Analysis on the data during resting state and seven different tasks are
through structure-function signatures quantification of
> SDI (Structural-Decoupling Index)

m Quantifies the degree of local (dis)alighment between
structure and function.

> c(coupled)-FC & d(decoupled)-FC(functional connectivity)
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Methodology - preprocessing

Data recording

fMRI acquired with 8 different task conditions on
100 unrelated healthy subjects. (resting state and 7
tasks: emotion, gambling, language, motor, relation,
social, working memory)

Sequences were pre-processed with state-of-the-art
pipelines to obtain regional functional time courses
and structural connections

Feature extraction

FC edge strength:

Pearson’s correlation between pairwise time courses
FC nodal strength:

Sum of absolute values of all the connections

A fMRI data
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Methodology - feature representation

(A fMRI data

SC Laplacian

L - I_Asymm

Structural harmonics u,_by eigendecomposition:
LU=LA

Where eigenvalue [A], =2, interpreted as spatial
frequency of the corresponding eigenvector U,
Frequency filter is applied.

LF: ¢ first eigenvectors complemented by zero

HF: last (N-c) first eigenvectors complemented by zero

GRAPH SIGNAL PROCESSING
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Methodology - feature representation

SC Laplacian:
L=14

symm
Eigendecomposition:
LU=LA

Low-pass filter:
U(low)
High-pass filter:
{(high)

GRAPH SIGNAL PROCESSING

fMRI data

FC edge strength

© FC node strength

EC[IEOU

coupled FC

- eFC -

decoupled FC

s E‘ =

Structural
Decoupling
Index

pou

._k_g...
e 4 D5
e

=

-5#;;: o 55,

7

B

Function data is projected:
§=U's,

Low-frequency functional activity comp:
SCt: U(low) UTSt
High-frequency functional activity comp:
SDt:U(high) UTSt

c-FC and d-FC are computed with Pairwise
Pearson’s correlations of s¢ p sDt.

L2 norm across time measures
(de)coupling:
SDI=||s||,/|Is"|l,




=PrL

Methodology - overview

. '
fMRI data B FCedgestrength . FCnode strength E 100 unrelated subjects
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GRAPH SIGNAL PROCESSING

erprinting

Fig. 1. Method workflow. From fMRI nodal signals at each timepoint (A), functional connectivity (FC) is evaluated through conventional edgewise (FC matrix)
and nodewise (FC node strength) measures (B). The graph signal processing (GSP) pipeline is applied to decompose functional signals into the structural harmonics
obtained from the eigendecomposition of the structural connectome (SC) Laplacian (C). Functional signals are then filtered into two components; i.e., one coupled
and one decoupled from structure, by applying ideal low pass (light blue) and high pass (pink) filters in the graph spectral domain (C). Edgewise and nodewise
metrics evaluating structure-function coupling are obtained by computing FC matrices from coupled and decoupled signals (coupled and decoupled FC (c-FC and
d-FC), respectively), and the structural decoupling index (SDI). Edgewise and nodal measures of both FC (B) and structure-function coupling (D) enter separate
support vector machine (SVM) classifications with various cross validation settings to test their task decoding and fingerprinting value, quantified by task and subject
identification accuracies (E).
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Results - accuracy

e SVMisused to classify different task-related states based on the extracted features.

Table 1

Task decoding, subject fingerprinting, and brain-cognition relationships. First column: task de-
coding accuracies for nodewise (FC nodal strength; SDI) and edgewise (FC, c-FC, d-FC) functional
and structure-function coupling measures estimated with 100-fold leave-one-subject-out cross-
validation and once-versus-one multiclass linear SVM classifiers. Second column: subject finger-
printing accuracies estimated with 800-fold leave-one-subject’s-task-out cross-validation and one-
versus-all multiclass SVM classifiers. Third column: brain-cognition r-squared (r?) computed as
the squared Pearson’s correlation coefficient between the brain and cognition latent scores ob-
tained from significant partial least squares correlation (PLSC) components. The brain-cognition
r? quantifies the amount of inter-individual cognitive traits’ variance explained by the five differ-
ent brain features, respectively.

Task Decoding accuracy ~ Subject Fingerprinting accuracy ~ Brain-Cognition r?

FC nodal strength  0.544 0.984 0.211
nodal SDI 0.756 0.997 0.180
Edge based features FC 0.919 0.964 0.224
well characterizing task { <Fc 0.893 0.972 0.209
d-FC 0.873 1.000 0.654

decoding patterns.
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Results - cross-task fingerprinting accuracies

TRAINING FOLD

TRAINING FOLD

FC nodal strength

RS Emo Gam Lan Mot Rel Soc

edgewise FC

RS Gam Lan Mot
RS 0.860 0.830 0.915 0,755 0.895

Emo 0.965 0.945 0915 0.945 0.975
Gam - 0.960 0.980 0.985 0.970
Lan 0.915 - 0.915 0.915 0.930

Mot 0975 0.930 - 0.850 0.905
Rel 0960 0.955 0.845 - 0.960

Soc g 0.760 0.930
wMm 1

0.955 0.995 0.980

TEST FOLD

WM

nodal SDI
RS Emo Gam Llan Mot Rel Soc WM

0.830

0.835
0.780 0.880

0.805 0.785

edgewise coupled FC
RS Emo Gam Lan Mot Rel

Soc WM

TEST FOLD

subject fingerprinting accuracy
b RO

t-and-task-out ¢

0s S

edgewise decoupled FC
Emo Gam Lan Mot Rel

Soc WM

TEST FOLD

Largely outperform
than other metrics!

Fig. 3. Cross-task fingerprinting accuracies for functional and structure-function coupling measures. Subject classification accuracies when using only one condition
—task or resting state— for training (matrices’ rows) and one for testing (matrices’ columns), with all pairwise task combinations explored and for all nodewise
(FC nodal strength; SDI) and edgewise (FC, c-FC, d-FC) measures. Classification accuracies were assessed with leave-one-subject-and-task-out cross-validation and
one-versus-all multiclass SVM classifiers. RS=resting state; Emo=emotion; Gam=gambling; Lan=language; Mot=motor; Rel=relational; Soc=social; WM=working
memory.
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Results - effect

Task decoding brain patterns

<Nl

Distribution of F-values from |
two-factor ANOVA analyses ™

1002, 40 60 80 100

Subject fingerprinting brain patterns

.+ o . statistically significant brain
= : tions

Structure-function coupling and functional connectivity measures provide cted(p<0.05)

Average of F-valuesin

complementary contributions to both task and subject identification.

different regions.
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Recovering Gene Interactions from
Single-Cell Data Using Data Diffusion

David van Dijk, Roshan Sharma, Juozas Nainys, Kristina Yim, Pooja Kathail,
Ambrose J. Carr, et. al.
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Background

Dropout: Single-cell RNA sequencing suffer from under-sampling of mRNA
molecules, which can obscure gene-gene relationships.

MAGIC: Markov affinity-based graph imputation of cells.
A method that shares information across similar cells via data diffusion, to
denoise the cell count matrix and fill in missing transcripts.
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Methodology

Embed cell phenotypes in a lower dimensional manifold using a nearest neighbor graph.

NMAatriv Af ~alle by caanac [baidAlaY Af +ha AAada (viach+)

Identifies the cells that are most similar and aggregates gene expression across
these highly similar cells to impute gene expression that corrects for dropout and

-
i Original Data SR
: o‘%

Cells

,

Cells
other cniirces nf nnice

Nearest neighbors in the raw data do not necessarily represent the most

( i Calculate Distances

Cells

— ~ o) biologically similar cells due to sparsity.
k EL kernel. 4
Distance J
- ¥ — ) Similarity between two cells decreases exponentially with their
he aakice etmslitich \ f\< Normalized affinétigs@re shown for a single point as
~ g transition probabilities, resulting in a Markov matrix.

M representing the probability distribution of transitioning from

N S
¥
( v Exponentiate markov h
i t " . .
matrix {\} \ @ one cell to another in a single step.
: J
.
N

L
vi Impute gene expression oted e Multiplication of the exponentiated Markov matrix by the
A original data matrix to obtain a denoised and imputed data

Exp. Markov Mat. ~ Original Data
W .4

x St - R .
Ly L matrix.
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Case study

MAGIC Enhances Structures in Bone Marrow, data evaluated in mouse bone marrow dataset.
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